Norm-Observable Operator Models
نویسندگان
چکیده
Hidden Markov models (HMMs) are one of the most popular and successful statistical models for time series. Observable operator models (OOMs) are generalizations of HMMs that exhibit several attractive advantages. In particular, a variety of highly efficient, constructive, and asymptotically correct learning algorithms are available for OOMs. However, the OOM theory suffers from the negative probability problem (NPP): a given, learned OOM may sometimes predict negative probabilities for certain events. It was recently shown that it is undecidable whether a given OOM will eventually produce such negative values. We propose a novel variant of OOMs, called norm-observable operator models (NOOMs), which avoid the NPP by design. Like OOMs, NOOMs use a set of linear operators to update system states. But differing from OOMs, they represent probabilities by the square of the norm of system states, thus precluding negative probability values. While being free of the NPP, NOOMs retain most advantages of OOMs. For example, NOOMs also capture (some) processes that cannot be modeled by HMMs. More importantly, in principle, NOOMs can be learned from data in a constructive way, and the learned models are asymptotically correct. We also prove that NOOMs capture all Markov chain (MC) describable processes. This letter presents the mathematical foundations of NOOMs, discusses the expressiveness of the model class, and explains how a NOOM can be estimated from data constructively.
منابع مشابه
The Libera operator on Dirichlet spaces
In this paper, we consider the boundedness of the Libera operator on Dirichlet spaces in terms of the Schur test. Moreover, we get its point spectrum and norm.
متن کاملNew product formulæ and quantum Zeno dynamics with generalized observables
We demonstrate a pair of new product formulæ which combine a projection with a resolvent of a positive operator, or with an exponential function and spectral projections, respectively. The convergence is strong or even operator-norm under more restrictive assumptions. The second mentioned formula can be used to describe Zeno dynamics in the situation when the usual non-decay measurement is repl...
متن کاملTwo Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane
Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...
متن کاملSimple Construction of a Frame which is $epsilon$-nearly Parseval and $epsilon$-nearly Unit Norm
In this paper, we will provide a simple method for starting with a given finite frame for an $n$-dimensional Hilbert space $mathcal{H}_n$ with nonzero elements and producing a frame which is $epsilon$-nearly Parseval and $epsilon$-nearly unit norm. Also, the concept of the $epsilon$-nearly equal frame operators for two given frames is presented. Moreover, we characterize all bounded invertible ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 22 7 شماره
صفحات -
تاریخ انتشار 2010